Мы приглашаем аспирантов и приглашенных научных сотрудников для проведения исследований в наших областях (см. ниже). Студенты-исследователи зарегистрированы для получения степеней Лондонского университета (MPhil / PhD) и работают под наблюдением членов академического персонала.
Студенты могут получать финансовую поддержку (исследовательские стипендии), предлагаемые советами по исследованиям (включая стипендии CASE в сотрудничестве с промышленным спонсором). Также доступно ограниченное количество студентов колледжа.
Алгебра
Ведущий в мире раздел алгебры включает исследования линейных групп и алгебраических групп, топологические и комбинаторные аспекты теории групп, конечных p-групп и теории вычислительных групп. Мы также исследуем теорию представлений, квантовые алгебры и алгебраическую геометрию, включая некоммутативную геометрию, теорию моделей, а также высшую или категориальную алгебру.
Анализ
Исследовательская работа посвящена гармоническому и функциональному анализу, особенно гармоническому анализу групп, операторных алгебр, бесконечномерных многообразий и голоморфности. Мы также исследуем алгебры Жордана и анализ бесконечномерных многообразий; операторные алгебры и функциональный анализ; и некоммутативная геометрия.
Комбинаторика
Очень активная группа, которая работает как по темам в комбинаторике (особенно по конечной геометрии и теории дизайна), так и по связям с алгеброй (группы перестановок), логикой (теория моделей), информацией и теорией кодирования, а также дизайном экспериментов. р>
Геометрия и топология
Исследования включают алгебраическую топологию, риманову геометрию, некоммутативную и алгебраическую геометрию. Существуют связи с другими областями, такими как теория групп, теория относительности и динамические системы.
Логика
Исследования в основном связаны с теорией моделей, в частности с алгебраической геометрией, теорией моделей карты Фробениуса, геометрией полей с мерой, (нестандартными) теориями когомологий и мотивационной интеграцией.
Теория чисел
Области, которые преследуются, включают алгебраическую теорию чисел и диофантово приближение. Теория чисел также используется в связи с исследованиями в других областях Школы, включая теорию групп, логику и динамические системы.
Вероятность
Области со стороны чистой математики включают рандомизированные алгоритмы, цепи Маркова (особенно время перемешивания комбинаторно или геометрически определенных цепей Маркова), вероятностные доказательства существования комбинаторных структур и использование случайных комбинаторных структур.
Относительность и вычисления
Группа относительности взаимодействует с астрономической группой на физическом факультете. Научные интересы включают: точные решения уравнений Эйнштейна и применения алгебраических вычислений, топологические вопросы, альтернативные теории гравитации, черные дыры и гравитационное излучение.
Статистическая механика;
Научные интересы этой группы включают методы обобщенной статистической механики, применяемые к различным сложным системам (гидродинамическая турбулентность, эконофизика, транспортный поток, биологические и медицинские приложения). Группа использует инструменты из теории больших уклонений, неравновесной статистической механики и теории случайных процессов. Группа также работает над сложными сетями, в частности с их динамичной эволюцией и характеристикой.
Статистика
Группа «Статистика» занимается планированием экспериментов, байесовской статистикой, алгебраической статистикой и последовательным анализом. При планировании экспериментов особое внимание уделяется приложениям в фармацевтической промышленности, сельском хозяйстве, пищевой промышленности и химии, но также изучаются лежащая в основе алгебраическая теория и комбинаторная структура. Члены группы также регулярно участвуют в проектах прикладной статистики вместе с исследователями из других дисциплин.
Требования
- Кандидаты на программы PhD или MPhil по математике или статистике, как правило, должны иметь диплом с отличием первого или хорошего уровня второго класса по математике или статистике или более высокую квалификацию, например MSci, MMath или MSc.
- Полная академическая справка (запись о пройденных курсах и достигнутых оценках)
- Кандидаты должны представить документацию о результатах GRE, полученных за последние пять лет, с указанием баллов по всем разделам экзамена
- Свидетельство вашего владения английским языком (для иностранных студентов)
- Резюме / биографические данные
- Два научных судьи отправляют конфиденциальные рекомендательные письма по адресу econpgadm@qmul.ac.uk
- Предложение об исследовании (1000 слов)
- IELTS 7.0
Хотите улучшить уровень английского для поступления?
Подготовьтесь к требованиям программы с помощью курсов English Online от Британского Совета.
- ✔️ Гибкий график занятий
- ✔️ Опытные преподаватели
- ✔️ Сертификат по окончании курса
📘 Рекомендуется для студентов с уровнем IELTS 6.0 или ниже.
Стипендия
- Стипендии для аспирантов и преподавателей QMUL
Группа по вопросам расы, представительства и культурной политики
Race, Representation and Cultural Politics Group